Redox Reactions

In the reaction $CuO + NH_3 \rightarrow Cu + N_2 + H_2O$, the oxidation number of 'N'

1)

	cnanges from							
	1) -2 to 0	2) $0 \text{ to } + 2$	3) - 3 to $+ 2$	4) - 3 to 0				
2)	In the reaction Ma	$nO_4^- \rightarrow MnO_2$, the nur	nber of OH ⁻ ions in	volved in the				
	balanced equation	is						
	1) 4	2) 6	3) 3	4) 2				
3)	In the reaction Cr ₂	$O_7^{-2} + NO_2^- + H^+ \rightarrow Cr^{+3}$	$+NO_3^-+H_2O$ the stoi	chiometric				
	coefficients of Cr ₂ C	O_7^{-2} , NO_2^- & H ⁺ respec	ctively are					
	1) 1, 3, 8	2) 1, 4, 8	3) 1, 3, 12	4) 1, 15, 12				
4)	In the reaction NO	$O_2 + H_2O \rightarrow NO_3^- + 2H^+$	+ ne ⁻ , the value of 'n	' is				
	1) 4	2) 3	3) 2	4) 1				
5)	Oxidation state of iron is zero in the complex							
	1) $K_4[Fe(CN)_6]$	$2) \left[\text{Fe} \left(\text{H}_2 \text{O} \right)_5 \right] \text{SO}_4$	3) $\left[\text{Fe(CO)}_{5} \right]$	4) $\operatorname{Na}_{3}\left[\operatorname{Fe}\left(\operatorname{CN}\right)_{6}\right]$				
6)	In which of the following pair of species, the central atom exhibits same							
	oxidation state							
	1) SO_4^{-2} , SO_3^{-2}	$2) \operatorname{CrO}_{4}^{-2}, \operatorname{CrO}_{5}$	$3) \mathrm{MnO}_2 \mathrm{,MnO}_4^{-2}$	4) $Cr_2O_7^{-2}$, Cr_2O_3				
7)	In the reaction Mn0	$O_4^- + C_2 O_4^{-2} + H^+ \to Mn^2$	$+^{2} + CO_{2} + H_{2}O$ the coo	efficients of				
	MnO_4^- , $C_2O_4^{-2}$, Mn^{+2}	² & CO ₂ are respective	vely					
	1) 1, 5,1,10	2) 2, 5,2,10	3) 2,3,2,6	4) 1, 6,1,12				
8)	The element which e	xhibits only one oxid	lation state in its con	npounds is				
	1) Cs	2) Cl	3) P	4) Mn				

- 9) The number of electrons required to balance the following half reaction in basic medium is $Cl_2 \to ClO_3^-$.
 - 1)6

2)8

3) 10

- 4) 12
- 10) $x \operatorname{Cr}(OH)_3 + y \operatorname{H}_2O_2 + z \operatorname{OH}^- \to a \operatorname{CrO}_4^{-2} + b \operatorname{H}_2O$. The coefficients x, y & z in the above equation are
 - 1) 1, 2, 3
- 2) 2, 2, 3
- 3) 2, 3, 4
- 4) 3, 2, 4
- 11) Which is not redox reaction among the following?
 - 1) $Cl_2 + 2KI \rightarrow 2KCl + I_2$

2) $2KClO_3 \rightarrow 2KCl + 3O_2$

3) $H_2 + Cl_2 \rightarrow 2HCl$

- 4) $K_2Cr_2O_7 + 2KOH \rightarrow 2K_2CrO_4 + H_2O$
- 12) Match the following underlined elements with oxidation numbers.

List - I

List – II

- A) HCN
- 1) + 7
- B) ClF₃
- 2) + 6
- C) HNO₄
- 3) + 5
- D) <u>Cr</u>O₅
- 4) + 3
- 5) + 2

Correct match is

A

5

 \mathbf{C} \mathbf{D}

- 1)
- **B**
- 3 2

1

2

- 2) 4
- 3

4

1

- 5
- 3)
- 5

3

- 3 2
- 4)
- 4

13)	Which	of the	following	is	correct?
-------------	-------	--------	-----------	----	----------

- I) Oxidants reduce themselves.
- II) Reduction involves de electro nation.
- III) Reductants oxidise others.

Correct combination is

1) All are correct.

2) I and II are correct.

3) II and III are correct.

- 4) I and III are correct.
- 14) The oxidation number of sodium in Na₂ Hg is
 - 1) + 1
- 2) + 2
- 3) + 3
- 4) Zero
- 15) Oxidation numbers of nitrogen in Ammonium nitrite are respectively
 - 1) + 3, + 5
- (2) 3 + 3
- 3) + 5, -3
- 4) + 3, -5
- 16) Oxidation number of nitrogen in Ammonium nitrate are respectively
 - 1) +3, +5
- 2) 3, + 3
- 3) 3, +5
- 4) + 3, -5
- 17) In which of the following hydrogen exhibits negative oxidation state
 - 1) NH₃
- 2) H₂S
- 3) C_6H_6
- 4) CaH₂

- 18) The strong reducing agent is
 - 1) HNO₂
- 2) H₂S
- 3) H₂SO₃
- 4) SnCl₂

- 19) In the reaction $Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$
 - 1) Zn is oxidized in H₂SO₄
 - 2) Hydrogen is oxidized in H₂SO₄
 - 3) Sulphur undergoes reduction in H_2SO_4
 - 4) Sulphur undergoes oxidation in H₂SO₄

20) When Zn is added	to CuSO ₄ sol	ution, Cu is precipitate	ed. It involves			
1) Oxidation of Cu ⁺²		2) Reduction of Cu ⁺²				
3) Zn is reduced, Cu	is oxidized	4) There is neither oxid	dation nor reduction			
21) Manganate ion is o	changed to pe	rmanganate ion. It is a	n example of			
1) Oxidation		2) Reduction				
3) Neither oxidation	nor reduction	4) Disproportion	onation			
22) Chlorine gas is pas	ssed through l	not solution of caustic j	ootash then chlorine in			
the reaction under	goes					
1) Oxidation		2) Reduction	2) Reduction			
3) Oxidation & Redu	ıction	4) Neither oxid	4) Neither oxidation nor reduction			
23) $MnO_4^- + H^+ + S^{-2} \rightarrow 1$	$Mn^{+2} + H_2O + S$, the number of electro	ons involved during the			
above transforma	tion					
1) 8	2) 6	3) 10	4) 5			
24) The number of moles of oxalate ions oxidized by one mole of MnO ₄ ion is						
1) 5	2) $\frac{2}{5}$	3) $\frac{1}{5}$	4) $\frac{5}{2}$			
25) For the redox read	ction Cr(OH) ₃	$+OH^- + IO_3^- \rightarrow CrO_4^{-2} + H$	$I_2O + I^-$. The correct			
coefficients of the	reactants for 1	the balanced equation	are respectively			
1) 1, 5, 1	2) 2, 4, 1	3) 1, 2, 1	4) 2, 6, 2			
26) List – I	List	– II				
$\mathbf{A)} \ \mathbf{P}_4 \to \mathbf{H}_2 \mathbf{PO}_2^-$	I) 2 electron	s are involved				
$\mathbf{B}) \operatorname{CrO}_{4}^{-2} \to \operatorname{CrO}_{5}$	II) 6 electrons are involved					
C) $IO_3^- \rightarrow I^-$	III) 4 electrons are involved					

D) $Cl_2 \rightarrow ClO_3^-$ **IV)** 10 electrons are involved

V) No electrons are involved

The correct match is

1`) A _	. 111	\mathbf{R}	– V,	C_{-}	_ 11	D	-11	7
1	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	. 111,	D	- v,	\mathbf{c}	_ 11,	$\boldsymbol{\nu}$	— I 1	•

2)
$$A - IV$$
, $B - I$, $C - V$, $D - II$

3)
$$A - I$$
, $B - II$, $C - III$, $D - IV$

27) $Cr \xrightarrow{OH^-} [Cr(OH)_4]^-$ for the balanced oxidation half reaction the number of electrons and OH ions required respectively

- 1) 4, 4
- 2) 4, 3
- 3) 3, 4
- 4) 2, 2

28) The oxidation number of iron in the brown ring complex is

1) + 3

- 2) + 2
- 3) + 4
- 4) + 1

29) a KMnO₄ + b H₂SO₄ + c FeSO₄ \rightarrow K₂SO₄ + MnSO₄ + Fe₂(SO₄)₃ + H₂O . In this un balanced stoichiometric equation, the values of a, b and c are respectively

- 1) 2, 8 and 10
- 2) 1, 4 and 10
- 3) 2, 10 and 8
- 4) 2, 8 and 16

30) The number of moles of $_{FeSO4\ In}$ balanced equation of

$$K_2Cr_2O_7 + H_2SO_4 + FeSO_4 \rightarrow K_2SO_4 + Cr_2(SO_4)_3 + Fe_2(SO_4)_3 + H_2O_{is}$$

1) 1

2) 7

3)6

4) 2

31) In the equation $MnO_4^- + C_2O_4^{2-} + H^+ \rightarrow Mn^{2+} + CO_2$ the numbers of moles of H+ ions involved in the balanced equation are

1)9

2) 16

3) 6

4) 12

32) In the reaction, $Cl_2 + \overline{O}H \rightarrow C\overline{1} + \overline{O}C1$ the number of moles of $\overline{O}H$ ions involved in the above equation is

1) 2

2) 3

3) 4

4) 5

33	3) In the equation	$p NH_3 + q O_2 \rightarrow$	$r H_2O + s NO, th$	e stoichometr	ic coefficient of				
	which species	is 4.							
	I) NH ₃	II) O ₂	III) H	$_2$ O	IV) NO				
	The correct ans	wer is							
	1) I, II and III	2) I and IV	3) II, I	III and IV	4) II and III				
34)	Assertion: (A): 7	Γhe oxidation s	tate of Iron in F	e_3O_4 is +3.					
	Reason: (R): Fe always shows +3 in all its compounds.								
	1) Both A and R are true, R is correct explanation of A.								
	2) Both A and R are true, R is not the correct explanation of A.								
	3) A is true but R	R is false.							
	4) Both A and R	are false.							
35)	In the conversion	of BaO ₂ to Ba	O, the oxidation	number of					
	1) Barium increa	ses	2) Ox	ygen increases	3				
	3) Oxygen decre	eases	4) Barium decreases						
36.	Oxidation state of	f Ni in Ni (CO)	4 is						
	1) 0	2) 4	3) 8	4) 2					
37.	37. Oxidation state of Fe in K ₄ [Fe (CN) ₆]								
	1) +6	2) +4	3) +2	4) +5					
38.	In which of the fo	ollowing the oxi	idation state of c	hlorine is +5?	•				
	1) HC <i>l</i> O ₄	2) HC <i>l</i> O ₃	3) HC <i>l</i> O ₂	4) HC <i>l</i>					

20	A 11	.14		. 1. 1. 1.	. • 1 . 4 •	4 4	. c
39.	AII	elements	commoniv	exhibit an	oxidation	state	OI.

1) + 1

2) -1

3) Zero

4) + 2

40. The maximum oxidation state that fluorine exhibits is

1) -1

2) Zero

3) +1

4) + 2

41. The element that always exhibits a negative oxidation state in its compounds is

1) Nitrogen

2) Oxygen

3) Fluorine

4) Chlorine

42) The oxidation number of Nitrogen is fractional in

1) NH₃

 $2) N_3H$

3) N_2H_4

4) NH₂OH

KEY

1)4 2)1

3) 1

4) 4

5) 3

15)2

6) 2

7)2

8) 1

18)2

9) 3

10) 3

11)4

13)2

14)4

16) 3

17)4

.

19) 1 20)2

21) 1

22)3 2

23)3

24)4

25)2

26)1

27)2

28) 4

29) 1 30) 3

31)2

32)1

12)3

33) 2

34)4

35)3

36) 1

37) 3

38) 2

39) 3

40)2

41) 3

42)2

HINTS

1. In NH₃ oxidation state of N is x+3=0, x=-3

In elementary state ox, no is zero

2. $MnO_4^- \rightarrow MnO_2$,

Balancing oxygen $MnO_4^- \rightarrow MnO_2 + 2H_2O$

Balancing H; $MnO_4^- + 4H_2O \rightarrow MnO_2 + 2H_2O + 4OH^-$

Balancing charge: $MnO_4^- + 2H_2O + 3e \rightarrow MnO_2 + 4OH^-$

3. The stoichiometric equation is

$$Cr_2O_7^{-2} + 3NO_2^- + 8H^+ \rightarrow 2Cr^{+3} + 3NO_3^- + 4H_2O$$

4. $NO_2 + H_2O \rightarrow NO_3^- + 2H^+ + ne^-$,

Total charge in reactants side=0

Total charge in products side=-1+2 =+1. Hence n=1

- 5. Ox. state of metal in metal carbonyl is zero.
- 6. O.s of Cr in CrO_4^{-2} is x+4(-2)=-2, x=+6

In CrO_{5} , one normal and 4 peroxy oxygen atoms are present. X+4(-1)+(-2)=0, x=+6

- 7. Balanced equation is $2MnO_4^- + 5C_2O_4^{-2} + 16H^+ \rightarrow 2Mn^{+2} + 10CO_2 + 8H_2O$
- 8. Elements of IA always show +1 in their compounds.
- 9. $Cl_2 \rightarrow 2ClO_3$

Balancing oxygen $Cl_2 + 6H_2O \rightarrow 2ClO_3$

Balancing H; $Cl_2 + 6H_2O + 12OH^2 \rightarrow 2ClO_3^2 + 12H_2O$

Balancing charge: $Cl_2 + 12OH^- + 10e \rightarrow 2ClO_3^- + 6H_2O$

10. Balanced equation is
$$\times 2Cr(OH)_3 + 3H_2O_2 + 4OH^- \rightarrow 2CrO_4^{-2} + 8H_2O$$

- 11. Ox. S of Cr is same (+6) in both sides.
- 12. In HNO₄, two peroxy O atoms present.

$$+1 +X+2(-2) +2(-1) =0, X=+5$$

- 14. O.S of metal in an alloy is zero.
- 15. NH₄NO₂ contains NH₄⁺and NO₂⁻ ions. In NH₄⁺ O.S of N is -3 and in NO₂⁻ is +3
- 16. NH₄NO₃ contains NH₄⁺and NO₃⁻ ions. In NH₄⁺ O.S of N is -3 and in NO₃⁻ is +5.
- 17. 'H' shows +ve oxidation state in metallic hydrides.
- 18. As 'S' is in its lowest oxidation state.
- 19. O.S of Zn increases from 0 to +2.
- 20. O.S of Cu decreases from +2 to 0.
- 21. O.S of Mn increases from +6 to +7.
- 22. 6NaOH+ $3Cl_2 \rightarrow 5NaCl+NaClO_3+3H_2O$, O.S of changes from 0 to -1 and 0 to +5.
- 23. $2MnO_4^- + 16H^+ + 5S^{-2} \rightarrow 2Mn^{+2} + 8H_2O + 5S$

Mn gains 10e and S⁻² looses 10e

24.
$$2KMnO_4 + 5H_2C_2O_4 + 3H_2SO_4 \longrightarrow K_2SO_4 + 2MnSO_4 + 10CO_2 + 8H_2O_4 + 10CO_2 + 8H_2O_2 + 8H_2$$

As per equation 2moles KMnO₄ oxidizes 5 moles of Oxalic acid.

1mole KMnO₄ oxidizes 5/2 moles of Oxalic acid

25.
$$K_2Cr_2O_7 + H_2SO_4 + FeSO_4 \rightarrow K_2SO_4 + Cr_2(SO_4)_3 + Fe_2(SO_4)_3 + H_2O_4 + FeSO_4 \rightarrow K_2SO_4 + Cr_2(SO_4)_3 + Fe_2(SO_4)_3 + H_2O_4 + FeSO_4 \rightarrow K_2SO_4 + Cr_2(SO_4)_3 + Fe_2(SO_4)_3 + Fe_2(SO_4)_4 + Fe_2(SO_4)_5 + Fe_2(SO_5)_5 + Fe_2(SO_5)_5 + Fe_2(SO_5)_5 + Fe_2(SO_5)_5 + Fe_2(SO$$

26.
$$2\text{Cr (OH) } 3 + 4\text{OH}^- + 1\text{O}_3^- \rightarrow \text{I}^- + 2 \text{ CrO}_4^{-2} + 5\text{H}_2\text{O}$$

27.
$$Cr \rightarrow [Cr(OH)_4]^-$$

Balance oxygen atoms $Cr + 4H_2O \rightarrow [Cr(OH)_4]^T$

Balance hydrogen atoms $\operatorname{Cr} + 4\operatorname{H}_2\operatorname{O} + 4\operatorname{OH}^- \rightarrow \left[\operatorname{Cr}\left(\operatorname{OH}\right)_4\right]^- + 4\operatorname{H}_2\operatorname{O}$

Balance the charge $\operatorname{Cr} + 4H_2O + 4OH^- \rightarrow \left[\operatorname{Cr}(OH)_4\right]^- + 4H_2O + 3e^-$

28: The brown ring complex compound is [Fe (H₂O) ₅ NO] SO₄.

The complex ion is [Fe (H_2O) 5 NO] $^{2+}$

Oxidation numbers of H₂O is zero and NO is+1.

Oxidation state of Fe is +1

29. Balanced equation is

$$2 \text{ KMnO}_4 + 8 \text{ H}_2 \text{SO}_4 + 10 \text{ FeSO}_4 \rightarrow \text{K}_2 \text{SO}_4 + 2 \text{MnSO}_4 + 5 \text{Fe}_2 (\text{SO}_4)_3 + 8 \text{H}_2 \text{O}_4$$

30. Balanced equation is

$$K_2Cr_2O_7 + 7H_2SO_4 + 6FeSO_4 \rightarrow K_2SO_4 + Cr_2(SO_4)_3 + 3Fe_2(SO_4)_3 + 7H_2O_4 + 6FeSO_4 \rightarrow K_2SO_4 + Cr_2(SO_4)_3 + 3Fe_2(SO_4)_3 + 7H_2O_4 + 6FeSO_4 \rightarrow K_2SO_4 + Cr_2(SO_4)_3 + 3Fe_2(SO_4)_3 + 7H_2O_4 + 6FeSO_4 \rightarrow K_2SO_4 + Cr_2(SO_4)_3 + 3Fe_2(SO_4)_3 + 7H_2O_4 + 6FeSO_4 \rightarrow K_2SO_4 + Cr_2(SO_4)_3 + 3Fe_2(SO_4)_3 + 7H_2O_4 + 6FeSO_4 \rightarrow K_2SO_4 + Cr_2(SO_4)_3 + 3Fe_2(SO_4)_3 + 7H_2O_4 + 6FeSO_4 \rightarrow K_2SO_4 + Cr_2(SO_4)_3 + 3Fe_2(SO_4)_3 + 7H_2O_4 + 6FeSO_4 \rightarrow K_2SO_4 + Cr_2(SO_4)_3 + 7H_2O_4 + 6FeSO_4 \rightarrow K_2SO_4 + 6FeSO_4 \rightarrow K_2SO_4 + 6FeSO_4 + 6FeSO_5 + 6FeSO_5$$

31.
$$2MnO_4^- + 5C_2O_4^{2-} + 16H^+ \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$$

32.
$$Cl_2+2 OH^- \rightarrow Cl^- + ClO^- + H_2O$$

33. 4 NH₃ + 5O₂
$$\rightarrow$$
 6 H₂O + 4 NO

- **34.** Fe_3O_4 is a mixed oxide of FeO and Fe_2O_3 . Thus Fe shows +2 and +3 OX. States
- **35.** OX.ST of oxygen decreases from -1 to -2.